
JAX-WS - 1.0
On this page:

Extension ID
What's new?
Description
Features

Annotations
Support for Apache CXF
Support for Server Tag in CXF web service
Support for Spring-WS

WebServiceTemplate
@Endpoint and @PayloadRoot annotations

Support for WS call using QName
Support of Handlerchain

Function Point, Quality and Sizing support
CAST AIP compatibility
Supported DBMS servers
Prerequisites
Dependencies with other extensions
Download and installation instructions

CAST Transaction Configuration Center (TCC) Entry Points
Manual import action for CAST AIP 8.2.x

Packaging, delivering and analyzing your source code
What results can you expect?

Objects

Target audience:

Users of the extension providing support for SOAP Web Services.JAX-WS

Extension ID
com.castsoftware.jaxws

What's new?
Please see for more information.JAX-WS - 1.0 - Release Notes

Description

In what situation should you install this extension?
The main purpose of this extension is to enable linking client side requests to the server side services that use JAX-WS. If your JEE application contains
source code which uses (and you want to view these object types and their links with other objects, then you should install this JAX-WS JSR 224)
extension.

Features

Summary: This document provides information about the extension providing support for Web Services.JAX-WS

https://doc.castsoftware.com/display/TECHNOS/JAX-WS+-+1.0+-+Release+Notes

Annotations

This extension handles JAX-WS web services (p used in JEE applications. JAX-WS contains a collection of annotations that articularly SOAP services)
enables the definition of the web service contract directly inside the java code:

JAX-WS Service is basically defined by a () annotation set on top of a class. This annotation may also be javax.jws.WebService @WebService
set on top of an interface, in this case, the interface will be the "Service Endpoint Interface" and no new web service will be created during the
analysis
An operation represents an action that can be triggered by a client application. It is represented by an object called " ". One SOAP Java Operation
operation represents a Java method of a class that is an annotation with . @WebService @WebMethod
A port type represents a collection of operations, it is represented by an object called " " which is a child of the java file SOAP Java Port Type
containing the class annotated by .@WebService
The JAX-WS Extension also handles the annotations and . Two different types of object are created to @WebServiceClient @WebEndpoint
represent these items: " " and " . Each web end point contains a list of operations called "SOAP Java Client Soap Client end point" SOAP Java

" and they represent the operations that can be remotely invoked on the server offering the web service.Client Operation

For example, the following code:

CalculatorImplCeiling.java

@WebService(
 serviceName="CalculatorServiceCeiling",
 portName="CalculatorPort",
 name="CalculatorCeiling",
 endpointInterface="com.castsoftware.ws.Calculator",
 targetNamespace="http://ws.castsoftware.com/")
public class CalculatorImplCeiling implements Calculator {
@Override
 public float add(int x, int y) {
 return x+y;
 }
}

Calculator.java

@WebService()
public interface Calculator {
 @WebMethod(operationName="addTwoIntegers")
 float add(int x, int y);
}

Will generate:

Support for Apache CXF

The Apache CXF API offers a mechanism where the web service is implemented without using annotations. It is instead specified inside an XML file (cxf-
context.xml file). This is in fact a kind of integration with Spring. This extension will handle JAX-WS seb services generated using the Apache CXF
framework.

A JAX-WS web service implemented by a Spring bean defined in a Spring XML configuration file and declared via the Apache CXF should be correctly
detected and created with this extension. All expected operations and links will be created.

For example, the following code:

web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
>

 <display-name>Product Service Web Service</display-name>

 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/beans-cxf.xml</param-value>
 <!-- <param-value>/WEB-INF/mvc-dispatcher-servlet.xml</param-value> -->
 </context-param>

beans-cxf.xml

<jaxws:endpoint id="productEndpoint"
 implementor="com.spring_cxf.ProductServiceImpl"
 address="/products" />

ProductServiceImpl.java

package com.spring_cxf;

import java.util.List;

public class ProductServiceImpl implements ProductService {

 private ProductServiceMockDaoImpl productServiceMockImpl;

 public void setProductServiceMockImpl(ProductServiceMockDaoImpl productServiceMockImpl) {
 this.productServiceMockImpl = productServiceMockImpl;
 }
 public Product getProduct(int productId) {

 return productServiceMockImpl.getProduct(productId);
 }

 public List<Product> getAllProducts() {
 return productServiceMockImpl.getAllProducts();
 }

}

will generate:

Support for Server Tag in CXF web service

Apache CXF allows the creation of endpoints based on and tags defined in the file. The jaxws:server Server ServerBeans applicationContext.xml appli
 file contains the mapping to the class. The implementor class contains the web service operations definitions. This cationContext.xml implementor

extension is capable of handling these scenarios and is able to create the expected links and objects.

In the example below, the is and is mapped to the implementing class serviceBean "#administration" administration cpp.administrationGestionnaire.
. The required objects and links for the class should be created during an analysis.Administration Administration

This will generate the following objects and links:

Support for Spring-WS

WebServiceTemplate

Spring-WS provides a client-side web service API that allows for consistent, XML-driven access to web service. The WebServiceTemplate is the core class
for client-side web service access in Spring-WS. It contains methods for sending Source objects, and receiving response messages as either Source or
Result. This extension will identify client-side services using WebServiceTemplate Methods that are used to invoke the web service.

For example, the following code:

TempClass.java

public class TempClass {

 private final WebServiceTemplate webServiceTemplate = new WebServiceTemplate();
 private static final String MESSAGE =
 "<message xmlns=\"http://tempuri.org\">Hello Web Service World</message>";
 void myFunc(String str)
 {
 System.out.println(str);
 }
 void sendMessageToServer(ClciUsoReadRequest123 request)
 {
 StreamSource source = new StreamSource(new StringReader(MESSAGE));
 StreamResult result = new StreamResult(System.out);
 myFunc("This to test");
 webServiceTemplate.marshalSendAndReceive(request);
 }
}

TestFile.wsdl

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://sam.att.com/dns/samservice" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 targetNamespace="http://sam.att.com/dns/samservice">
 <wsdl:portType name="CLCIQueryPortType123">
 <wsdl:operation name="getClciUso123">
 <wsdl:input message="tns:ClciUsoReadRequest123" />
 <wsdl:output message="tns:ClciUsoReadResponse123" />
 <wsdl:fault name="WSException" message="tns:WSException" />
 </wsdl:operation>
 </wsdl:portType>
</wsdl:definitions>

Will generate:

@Endpoint and @PayloadRoot annotations

The classes where SOAP web service requests are handled are annotated by @Endpoint. The analyzer inspects these classes in search of further
@PayloadRoot-annotated methods. This annotation maps the method to the root element of the request payload. It should be noted that typical setup of
Spring Web Service configurations is performed from initial .xsd schema files to generate .java files and stubs as well as contract .wsdl files. These .wsdl
files are generated following some customizable naming conventions (using for example). The analyzer directly searches the jsxb2-maven-plugin
corresponding SOAP web service operations exposed by directly inspecting the nearby .wsdl files in the analysis unit. Thus the presence of .wsdl files (as
it is usually the case) in the source code is necessary for the analyzer to correctly interpret SOAP web service operations based on the @PayloadRoot
annotation.

Consider the below example code:

// Source: http://justcompiled.blogspot.com/2010/09/building-web-service-with-spring-ws.html
package com.live.order.service.endpoint;

import org.springframework.ws.server.endpoint.annotation.Endpoint;
import org.springframework.ws.server.endpoint.annotation.PayloadRoot;

@Endpoint
public class OrderServicePayloadRootAnnotationEndPoint {

 @PayloadRoot(localPart = "placeOrderRequest", namespace = "http://www.liverestaurant.com/OrderService
/schema")
 public JAXBElement<PlaceOrderResponse> getOrder(...) {
}

Together with an excerpt of the .wsdl file, note the connection between the localPart and the name of the input message

 <wsdl:portType name="OrderService">
 <wsdl:operation name="placeOrder">
 <wsdl:input message="tns:placeOrderRequest" name="placeOrderRequest">
 </wsdl:input>
 <wsdl:output message="tns:placeOrderResponse" name="placeOrderResponse">
 </wsdl:output>
 ...
 </wsdl:portType>

The analyzer will create a SOAP Java Operation object (with fullname) together with a link to the handler method .OrderService.placeOrder getOrder

A warning note: the .wsdl file itself will contain a WSDL Operation object that can lead to confusion:

This WSDL Operation, though related, does not belong to com.castsoftware.jaxws, and in contrast to SOAP Java Operation objects, it is not expected to
participate in transactions, and thus only inter-techno links are expected to be found for the latter (via the web-service linker at application analysis level).

Support for WS call using QName

The web service can be published in a server and the wsdl can be used on the client side referring to the hosted URL and web service. The publisher of
the web service uses the URL and the web service to publish the web service. For example "http://<hostname>:port/service". The client can use the web
service by referring to the wsdl and creating a service. Client needs to create a Qualified Name to refer to the service. Once the service is referred it can
use any port and request the service. For example:

CalWebServiceImpl.java

package com.cast;

import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;
import javax.jws.soap.SOAPBinding.Style;

@WebService(endpointInterface = "com.castwork.CalWebService")
@SOAPBinding(style = Style.RPC)
public class CalWebServiceImpl implements CalWebService{
 @Override
 public int add(int val1, int val2){
 return val1+val2;
 }
}

Publish.java

package com.cast;

import javax.xml.ws.Endpoint;

public class Publish {
 public static void main(String []args)
 {
 Endpoint endpoint = Endpoint.publish("http://localhost:8080/cal",new CalWebServiceImpl());
 System.out.println(endpoint.isPublished());
 }
}

CalClient.java

package com.cast;

import java.net.MalformedURLException;
import java.net.URL;

import javax.xml.ws.Service;

import javax.xml.namespace.QName;

public class CalClient {

 public static void main(String[] args) throws MalformedURLException {
 // TODO Auto-generated method stub
 URL url = new URL("http://localhost:8080/cal?wsdl");
 javax.xml.namespace.QName qName = new QName("http://rajeshwork.com/","
CalWebServiceImplService");
 Service service = Service.create(url,qName);
 CalWebService calService = service.getPort(CalWebService.class);
 System.out.println(calService.add(100, 400));

 }

}

In the above code is using the service. So there should be a link between client and server. Using this the JAX-WS extension the link shown CalClient
below can be obtained:

Support of Handlerchain

This extension handles the links to the , and methods which will be called for the request or response. close handleMessage handleFault
@HandlerChain annotation receives as argument the path to the xml file where the handle class name is specified (we don't support paths given as
URLs). The class containing the handler methods is identified in the handler file and the respective call-links are created from the operations to the
methods.

For example, the following code:

handler-chain.xml

<handler-chains xmlns:javaee="http://java.sun.com/xml/ns/javaee">
 <handler-chain>
 <handler>
 <handler-name>com.cast.handler.MacAddressValidatorHandler</handler-name>
 <handler-class>com.cast.handler.MacAddressValidatorHandler</handler-class>
 </handler>
 </handler-chain>
</handler-chains>

MacAddressValidatorHandler.java

public class MacAddressValidatorHandler implements SOAPHandler<SOAPMessageContext>{

 @Override
 public boolean handleMessage(SOAPMessageContext context) {
 return true;
 }
 @Override
 public boolean handleFault(SOAPMessageContext context) {
 System.out.println("Server : handleFault()......");
 return true;
 }
 @Override
 public void close(MessageContext context) {
 System.out.println("Server : close()......");
 }
}

ServerInfo.java

@WebService
@HandlerChain(file="handler-chain.xml")
public class ServerInfo{

 @WebMethod
 public String getServerName() {

 return "Cast server";

 }
 @WebMethod
 public String getServerAddress() {

 return "Cast server Address";
 }
}

will generate:

Function Point, Quality and Sizing support
This extension provides the following support:

Function Points
(transactions)

Quality and Sizing

CAST AIP compatibility
This extension is compatible with:

CAST AIP release Supported

8.3.x

8.2.x

Supported DBMS servers
This extension is compatible with the following DBMS servers:

CAST AIP release CSS Oracle Microsoft

All supported releases (see above)

Prerequisites

An installation of any compatible release of CAST AIP (see table above)

Dependencies with other extensions
Some CAST extensions require the presence of other CAST extensions in order to function correctly. The JAX-WS extension requires that the following
other CAST extensions are also installed:

Web services linker service (internal technical extension).

Download and installation instructions
Please see:

Download an extension
Install an extension

CAST Transaction Configuration Center (TCC) Entry Points

In , a set of JAX-WS for use in the CAST Transaction Configuration Center is delivered in the extension JAX-WS 1.0.x Transaction Entry / End Points
via a .TCCSetup file. Therefore If you are using :JAX-WS 1.0.x

with , there is nothing for you to do: these entry / end points will be automatically imported during the extension installation and CAST AIP 8.3.x
will be available in the CAST Transaction Configuration Center under "Entry Points > Free Definition".
with , you can manually import the file to obtain your entry / end points in the "CAST AIP 8.2.x Configuration\TCC\Base_JAXWS.TCCSetup Fre

" section (see instructions below).e Definition

Manual import action for CAST AIP 8.2.x

Locate the .TCCSetup file in the extension folder: Configuration\TCC\Base_JAXWS.TCCSetup
In the CAST Transaction Configuration Center, ensure you have selected the node:Templates

Note that when using the to download the extension and the interface in CAST Extension Downloader Manage Extensions CAST Server
 to install the extension, any dependent extensions are downloaded and installed for you. You do not need to do Manager automatically

anything.

The latest release status of this extension can be seen when downloading it from the CAST Extend server.

https://doc.castsoftware.com/display/EXTEND/Download+an+extension
https://doc.castsoftware.com/display/EXTEND/Install+an+extension
https://doc.castsoftware.com/display/EXTEND/Release+types

This .TCCSetup file is to be imported into the CAST Transaction Calibration Center using either the:
File > menu option:Import Configuration

Or right clicking on the and selecting :Template node Import Configuration

The import of the " " file will provide you with a sample Transaction Entry point in the Configuration\TCC\Base_JAXWS.TCCSetup Free
 node underDefinition Templates.

Now right click the " " item and select copy:Standard Entry Point

Paste the item into the under the , for example, below we have copied it into the :equivalent node Application Application MEUDON

Repeat for any additional items or generic sets that have been imported from the .TCCSetup file.

Packaging, delivering and analyzing your source code
Once the extension is installed, no further configuration changes are required before you can package your source code and run an analysis. The process
of packaging, delivering and analyzing your source code does not change in any way:

Package and deliver your application (that includes source code which uses) in the exact same way as you always have. JAX-WS
Analyze your delivered application source code in the CAST Management Studio in the exact same way as you always have - the source code
which uses will be detected and handled correctly.JAX-WS

What results can you expect?
The extension is shipped with a set of CAST Transaction Configuration Center , specifically related to JAX-WS Please see Entry Points CAST

 for more information about this.Transaction Configuration Center (TCC) Entry Points
Once the analysis/snapshot generation has completed, transaction entry points will be available for use when configuring the CAST HTTP API
Transaction Configuration Center. In addition, you can view the results in the normal manner (for example via CAST Enlighten).

Objects

The following objects are displayed in CAST Enlighten:

Icon Object Type

SOAP Java Web Service

SOAP Java Port Type

SOAP Java Operation

SOAP Java Client Operation

SOAP Java Client

SOAP Client end point

	JAX-WS - 1.0

