JAX-WS -1.0

On this page:

Extension ID
What's new?
Description
Features
® Annotations
® Support for Apache CXF
® Support for Server Tag in CXF web service
® Support for Spring-WS
® WebServiceTemplate
® @Endpoint and @PayloadRoot annotations
® Support for WS call using QName
® Support of Handlerchain
Function Point, Quality and Sizing support
CAST AIP compatibility
Supported DBMS servers
Prerequisites
Dependencies with other extensions
Download and installation instructions
® CAST Transaction Configuration Center (TCC) Entry Points
® Manual import action for CAST AIP 8.2.x
® Packaging, delivering and analyzing your source code
® What results can you expect?
® Objects

Target audience:

Users of the extension providing JAX-WS support for SOAP Web Services.

(D Summary: This document provides information about the extension providing JAX-WS support for Web Services.

Extension ID

com.castsoftware.jaxws

What's new?
Please see JAX-WS - 1.0 - Release Notes for more information.
Description

In what situation should you install this extension?

The main purpose of this extension is to enable linking client side requests to the server side services that use JAX-WS. If your JEE application contains
source code which uses JAX-WS (JSR 224) and you want to view these object types and their links with other objects, then you should install this
extension.

iy Web Service
Messages

Features



https://doc.castsoftware.com/display/TECHNOS/JAX-WS+-+1.0+-+Release+Notes

Annotations

This extension handles JAX-WS web services (particularly SOAP services) used in JEE applications. JAX-WS contains a collection of annotations that
enables the definition of the web service contract directly inside the java code:

* JAX-WS Service is basically defined by a javax.jws.WebService (@WebService) annotation set on top of a class. This annotation may also be
set on top of an interface, in this case, the interface will be the "Service Endpoint Interface" and no new web service will be created during the
analysis

® An operation represents an action that can be triggered by a client application. It is represented by an object called "SOAP Java Operation". One
operation represents a Java method of a @WebService class that is an annotation with @WebMethod.

® A port type represents a collection of operations, it is represented by an object called "SOAP Java Port Type" which is a child of the java file
containing the class annotated by @WebService.

®* The JAX-WS Extension also handles the annotations @WebServiceClient and @WebEndpoint. Two different types of object are created to
represent these items: "SOAP Java Client" and "Soap Client end point". Each web end point contains a list of operations called "SOAP Java
Client Operation" and they represent the operations that can be remotely invoked on the server offering the web service.

For example, the following code:

CalculatorimplCeiling.java

@\ébSer vi ce(

servi ceNanme="Cal cul at or Servi ceCei |l i ng",

por t Name="Cal cul at or Port",

nanme="Cal cul at or Cei | i ng",

endpoi nt I nt erface="com castsoftware.ws. Cal cul ator",

target Nanespace="http://ws. castsoftware. con ")
public class CalculatorlnplCeiling inplements Calculator {
@verride

public float add(int x, int y) {

return x+y;

}
}

Calculator.java

@\ebServi ce()

public interface Calcul ator {
@\ébMet hod( oper ati onNane="addTwol nt egers")
float add(int x, int y);

}

Will generate:

SOAP Java Operation P -9 public Java Method
addTwolntegers - add

Support for Apache CXF

The Apache CXF API offers a mechanism where the web service is implemented without using annotations. It is instead specified inside an XML file (cxf-
context.xml file). This is in fact a kind of integration with Spring. This extension will handle JAX-WS seb services generated using the Apache CXF
framework.

A JAX-WS web service implemented by a Spring bean defined in a Spring XML configuration file and declared via the Apache CXF should be correctly
detected and created with this extension. All expected operations and links will be created.

For example, the following code:



web.xml

<?xm version="1.0" encodi ng="UTF-8"?>
<web-app version="2.5" xm ns="http://java.sun.com xnml /ns/javaee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi:schemaLocation="http://java. sun.com xm /ns/javaee http://java. sun.com xm / ns/javaee/ web- app_2_5. xsd"

<di spl ay- name>Pr oduct Service Web Servi ce</di spl ay- nane>
<cont ext - par an>
<par am nanme>cont ext Confi gLocat i on</ par am nane>
<par am val ue>/ WEB- | NF/ beans- cxf . xm </ par am val ue>

<!-- <param val ue>/ WVEB- | NF/ mvc- di spat cher-servl et. xm </ param val ue> -->
</ cont ext - par an»>

beans-cxf.xml

<j axws: endpoi nt i d="product Endpoi nt"
i mpl ement or =" com spri ng_cxf. Product Servi cel npl "
address="/products" />

ProductServicelmpl.java

package com spring_cxf;

import java.util.List;

public class ProductServicelnpl inplements ProductService {
private Product Servi ceMbckDaol npl product Servi ceMockl npl ;

public void setProduct Servi ceMockl npl (Product Servi ceMockDaol npl  product Servi ceMockl npl) {
t hi s. product Servi ceMockl npl = product Servi ceMockl npl ;

}
public Product getProduct(int productld) {

return product Servi ceMbckl npl . get Product ( product1d);
}

public List<Product> getAllProducts() {
return product Servi ceMockl npl . get Al | Products();

}

will generate:



SOAP Java Operation P - _‘ public Java Method

getProduct getProduct
SOAP Java Operation P o _‘ public Java Method
getAllProducts T= getAlProducts

Support for Server Tag in CXF web service

Apache CXF allows the creation of jaxws:server endpoints based on Server and ServerBeans tags defined in the applicationContext.xml file. The appli
cationContext.xml file contains the mapping to the implementor class. The implementor class contains the web service operations definitions. This
extension is capable of handling these scenarios and is able to create the expected links and objects.

In the example below, the serviceBean is "#administration" and administration is mapped to the implementing class cpp.administrationGestionnaire.
Administration. The required objects and links for the class Administration should be created during an analysis.

applicationContext.xml

<jaxws:server serviceClass="company.com.gpp.administrationGestionnaire.AdninistrationSEI"
address="/Administration" serviceBsan="#administration":
</jaxws:server>

<!-- liaison gygg Spring Llimplimentation -->
<bean id="administration" class="company.com.Zpp.administrationGestionnaire.
</bean>

Administration.java

BWebService (endpointInterfacyg’ s { . COM. GOD is
public class|Administration [implements AdministrationSEI
{

This will generate the following objects and links:

="£] refuserRattachement ~
a--{] refuserRattachementListe E} SOAP Java Web Service
=--{] refuserRattachementStru Administraion
0 B SOAP Java Operation
-
{4 refuserRattachementsEnl B T A

=--{] remplacerGestionnairePri
7 validerAbonnement <4 public Java Class 8 | JavaFile

& Administration -
B3 validerAbonnementEnM3 A Administration java

2--{] validerAbonnementEnMe B
a--{] validerAbonnementEnMe B
=--{] validerRattachement u ]
. SOAP Java Operation
a2 validerRattachementsEnN GJ ShOAF‘n;la\[Ia O gMIondeAb t B B E refuserRafiachement u
chargerHistoriqueDeman onneme:
-« AdministrationSEl java e d SOAP Java Port Type .
| AdministrationSEl
@ bat B
@ bib SOAP Java Operation
@ common SOAP Java Operation desactiverReactiverRattachement
@ metier desactiverRattachementCompteFo B B

@ transverse

SOAP Java Operation "
SOAP Java Operation
n 594258 GJ desactiverRattachementCompteFoEnMasse EJ desactiverReactiverRattachementsEnMasse

Support for Spring-WS

WebServiceTemplate



Spring-WS provides a client-side web service API that allows for consistent, XML-driven access to web service. The WebServiceTemplate is the core class
for client-side web service access in Spring-WS. It contains methods for sending Source objects, and receiving response messages as either Source or
Result. This extension will identify client-side services using WebServiceTemplate Methods that are used to invoke the web service.

For example, the following code:

TempClass.java

public class Tenpd ass {

private final WebServiceTenpl ate webServi ceTenpl ate = new WebServi ceTenpl ate();
private static final String MESSAGE =

"<message xm ns=\"http://tenpuri.org\">Hell o Web Service Wrl d</ nessage>";
void nmyFunc(String str)

{
Systemout. println(str);
}
voi d sendMessageToSer ver (C ci UsoReadRequest 123 request)
{
St reanBSour ce source = new StreanBource(new StringReader (MESSAGE)) ;
StreanResult result = new StreanResul t (System out);
nmyFunc("This to test");
webSer vi ceTenpl at e. mar shal SendAndRecei ve(request);
}
}
TestFile.wsdl

<wsdl : definitions xm ns:wsdl ="http://schenas. xm soap. org/ wsdl /"
xm ns:tns="http://sam att.com dns/sanservi ce" xml ns:soap="http://schemas. xrm soap. or g/ wsdl / soap/ "
t arget Namespace="http://sam att.conf dns/ sanservi ce">
<wsdl : port Type nane="CLCl QueryPort Typel23">
<wsdl : operati on nane="get Cl ci Uso123" >
<wsdl ;i nput message="tns: d ci UsoReadRequest 123" />
<wsdl : out put message="tns: C ci UsoReadResponsel23" />
<wsdl : faul t name="WSException" nessage="tns: WsExcepti on" />
</ wsdl : operati on>
</wsdl : port Type>
</wsdl : definitions>

Will generate:

Java Method Ae - SOAP Java Client Operation
sendMessageToSever sendMessageToSever

@Endpoint and @PayloadRoot annotations

The classes where SOAP web service requests are handled are annotated by @Endpoint. The analyzer inspects these classes in search of further
@PayloadRoot-annotated methods. This annotation maps the method to the root element of the request payload. It should be noted that typical setup of
Spring Web Service configurations is performed from initial .xsd schema files to generate .java files and stubs as well as contract .wsdl files. These .wsdl
files are generated following some customizable naming conventions (using for example jsxb2-maven-plugin). The analyzer directly searches the
corresponding SOAP web service operations exposed by directly inspecting the nearby .wsdl files in the analysis unit. Thus the presence of .wsdl files (as
it is usually the case) in the source code is necessary for the analyzer to correctly interpret SOAP web service operations based on the @PayloadRoot
annotation.

Consider the below example code:



/1 Source: http://justconpiled. bl ogspot.com 2010/ 09/ bui | di ng- web-servi ce-wi t h-spri ng-ws. ht nl
package com live. order. service. endpoi nt;

i nport org.springframework. ws. server. endpoi nt. annot ati on. Endpoi nt ;
i mport org.springfranmework. ws. server. endpoi nt. annot ati on. Payl oadRoot ;

@ndpoi nt
public class OrderServi cePayl oadRoot Annot at i onEndPoi nt {

@rayl oadRoot (1 ocal Part = "pl aceOrder Request”, nanespace = "http://ww.|liverestaurant.conf O derService
/ schema")

publ i c JAXBEI enent <Pl aceOr der Response> getOrder(...) {
}

Together with an excerpt of the .wsdl file, note the connection between the localPart and the name of the input message

<wsdl : port Type nanme="Or der Servi ce">
<wsdl : operati on nane="pl aceOrder" >
<wsdl : i nput message="tns: pl aceOrder Request" nane="pl aceOr der Request ">
</ wsdl : i nput >
<wsdl : out put message="t ns: pl aceOr der Response" nane="pl aceOr der Response" >
</ wsdl : out put >

</wsdl : port Type>

The analyzer will create a SOAP Java Operation object (with fullname OrderService.placeOrder) together with a link to the handler method getOrder.

public Java Class
OrderServicePayloadRootAnnotationEndPoint

B B
® SOAP Java Operation P /= public Java Method
placeCrder - getOrder

A warning note: the .wsdl file itself will contain a WSDL Operation object that can lead to confusion:

s WSDL Fie
OrderServcewsd
B B
WSDL Sevice WSDL Port Type
OrderServic eSenice | OrderService

B

D WSDL Operation
placeOmder

This WSDL Operation, though related, does not belong to com.castsoftware.jaxws, and in contrast to SOAP Java Operation objects, it is not expected to
participate in transactions, and thus only inter-techno links are expected to be found for the latter (via the web-service linker at application analysis level).

Support for WS call using QName

The web service can be published in a server and the wsdl can be used on the client side referring to the hosted URL and web service. The publisher of
the web service uses the URL and the web service to publish the web service. For example "http://<hostname>:port/service". The client can use the web
service by referring to the wsdl and creating a service. Client needs to create a Qualified Name to refer to the service. Once the service is referred it can
use any port and request the service. For example:



CalWwebServicelmpl.java

package com cast;

i mport javax.jws.WbService;
i mport javax.jws.soap. SOAPBi ndi ng;
i mport javax.jws.soap. SOAPBi ndi ng. Styl e;

@\bSer vi ce(endpoi ntInterface = "com castwor k. Cal WebSer vi ce")
@0APBI ndi ng(style = Styl e. RPC)
public class Cal WebServicel npl inplenments Cal WebSer vi ce{
@verride
public int add(int vall, int val2){
return val 1+val 2;

}

Publish.java

package com cast;
i mport javax.xmnl .ws. Endpoint;

public class Publish {
public static void nain(String []args)
{
Endpoi nt endpoi nt = Endpoi nt. publish("http://Iocal host: 8080/ cal ", new Cal WebSer vi cel npl ());
System out . printl n(endpoi nt.isPublished());

CalClient.java

package com cast ;

i nport java.net. Ml formedURLExcepti on;
i mport java.net.URL;

i nport javax.xnl.ws. Service;

i nport javax.xnl . namespace. QNane;
public class Caldient {

public static void main(String[] args) throws Ml fornmedURLException {

/] TODO Aut o-generated net hod stub

URL url = new URL("http://]ocal host: 8080/ cal ?wsdl");

j avax. xnl . nanespace. QNane gNarme = new QNarme("http://raj eshwork.com ", "
Cal WebSer vi cel npl Service");

Service service = Service.create(url, gNane);

Cal WebServi ce cal Servi ce = service. get Port (Cal WebSer vi ce. cl ass);

System out. println(cal Servi ce. add(100, 400));

In the above code CalClient is using the service. So there should be a link between client and server. Using this the JAX-WS extension the link shown
below can be obtained:

5_‘ public static Java Method c SOAP Java Web Service
= main CalWebServicelmplSenice




Support of Handlerchain

This extension handles the links to the close, handleMessage and handleFault methods which will be called for the request or response.
@HandlerChain annotation receives as argument the path to the xml file where the handle class name is specified (we don't support paths given as
URLSs). The class containing the handler methods is identified in the handler file and the respective call-links are created from the operations to the
methods.

For example, the following code:

handler-chain.xml

<handl er-chai ns xm ns:javaee="http://java. sun.com xm / ns/j avaee" >
<handl er - chai n>
<handl er >
<handl er - nane>com cast . handl er. MacAddr essVal i dat or Handl er </ handl er - nane>
<handl er - cl ass>com cast . handl er. MacAddr essVal i dat or Handl er </ handl er - cl ass>
</ handl er >
</ handl er - chai n>
</ handl er - chai ns>

MacAddressValidatorHandler.java

public class MacAddressVal i dat or Handl er inpl enents SOAPHandl er <SOAPMessageCont ext >{

@verride
public bool ean handl eMessage( SOAPMessageCont ext context) {
return true;

}

@verride

publ i c bool ean handl eFaul t (SOAPMessageCont ext context) {
Systemout.println("Server : handleFault()...... ");
return true;

}

@verride

public void close(MessageContext context) {
Systemout.println("Server : close()...... ")

}

Serverinfo.java

@\ebServi ce
@+andl er Chai n(fil e="handl er-chai n.xm ")
public class Serverl nfo{

@\ebMet hod
public String getServerNanme() {

return "Cast server";
}
@\ebMet hod
public String getServerAddress() {

return "Cast server Address";

will generate:



SOAP Java QOperation C - _‘ public Java Me
getServerName - handleMessage

_‘ public Java Method
= handleFault

SOAP Java Operation C _ public Java Method
getServerAddress o :_‘ close




Function Point, Quality and Sizing support

This extension provides the following support:

Function Points Quality and Sizing
(transactions)

o )



CAST AIP compatibility

This extension is compatible with:

CAST AIP release Supported

8.3.x (V]
8.2.x (V]

Supported DBMS servers

This extension is compatible with the following DBMS servers:

CAST AIP release CSs Oracle Microsoft
All supported releases (see above) @ (V] (]
Prerequisites

O An installation of any compatible release of CAST AIP (see table above)

Dependencies with other extensions

Some CAST extensions require the presence of other CAST extensions in order to function correctly. The JAX-WS extension requires that the following
other CAST extensions are also installed:

®* Web services linker service (internal technical extension).
Note that when using the CAST Extension Downloader to download the extension and the Manage Extensions interface in CAST Server

Manager to install the extension, any dependent extensions are automatically downloaded and installed for you. You do not need to do
anything.

Download and installation instructions

Please see:
® Download an extension

® |nstall an extension

@ The latest release status of this extension can be seen when downloading it from the CAST Extend server.

CAST Transaction Configuration Center (TCC) Entry Points

In JAX-WS 1.0.x, a set of JAX-WS Transaction Entry / End Points for use in the CAST Transaction Configuration Center is delivered in the extension
via a .TCCSetup file. Therefore If you are using JAX-WS 1.0.x:

* with CAST AIP 8.3.x, there is nothing for you to do: these entry / end points will be automatically imported during the extension installation and
will be available in the CAST Transaction Configuration Center under "Entry Points > Free Definition".

® with CAST AIP 8.2.x, you can manually import the file Configuration\TCC\Base_JAXWS.TCCSetup to obtain your entry / end points in the "Fre
e Definition" section (see instructions below).

Manual import action for CAST AIP 8.2.x

® [ocate the .TCCSetup file in the extension folder: Configuration\TCC\Base_JAXWS.TCCSetup
® |n the CAST Transaction Configuration Center, ensure you have selected the Templates node:


https://doc.castsoftware.com/display/EXTEND/Download+an+extension
https://doc.castsoftware.com/display/EXTEND/Install+an+extension
https://doc.castsoftware.com/display/EXTEND/Release+types

(& CAST - Transaction configuration center -
File Edit Calibrate Help

G Hd YW BB ¥ 0

¥ &2 Entry Points
E| By naming

I_IL'I Dy jmbaviteme

® This .TCCSetup file is to be imported into the CAST Transaction Calibration Center using either the:
® File > Import Configuration menu option:

(5) CAST - Transaction confiquration cent
FEN Edit Calibrate Help

& MNew connection
[ save Cirl+5
&~ Import configuration...
E Export ponficuration
B Import configuration...

® Or right clicking on the Template node and selecting Import Configuration:

@ CAST - Transaction configuration center - uEEﬁ_n
File Edit Calibrate Help

& i ¢W i

B ¥

E Export configuration...
,_,’-"-L’ Ipdate canfiguration...

® The import of the "Configuration\TCC\Base_JAXWS.TCCSetup" file will provide you with a sample Transaction Entry point in the Free
Definition node under Templates.
® Now right click the "Standard Entry Point" item and select copy:

@ Entry Points - Free definition

Description

| Activation

0TI
S Mewline  Cirl+r
. o+

Standard Entry Point - Java - Spring MyYC

e+

® Paste the item into the equivalent node under the Application, for example, below we have copied it into the Application MEUDON:



L4 .j}" [Termplates)

&> Entry Points - Free definition
¥ & Entry Points v

E| By naming ¥ | Description
“| By inheritance
B E:type B Mew ling Ctrl+ M
|| Free definition of Cut Cirl+3
» I Data Entities L Cirl+C

[ =]
X Celete
Type @ Generate set

B Fi B cenerate all sets

» 5 End Points Clrl+Y

* 3 Excluded lterms

Delete

Transaction Caonfiguration
¥ &> Entry Points
") By naming » [ Identification

| Byinheritance » [ Types
[ » [ categories

EJ Show only application types

Il
B Free definition

# LIl Data Entities

» 11l End Paints

» X Excluded lters
® |} AFP Calibration
k5 Enhancement

@ Loy

® Repeat for any additional items or generic sets that have been imported from the .TCCSetup file.

Packaging, delivering and analyzing your source code

Once the extension is installed, no further configuration changes are required before you can package your source code and run an analysis. The process
of packaging, delivering and analyzing your source code does not change in any way:

® Package and deliver your application (that includes source code which uses JAX-WS) in the exact same way as you always have.
* Analyze your delivered application source code in the CAST Management Studio in the exact same way as you always have - the source code
which uses JAX-WS will be detected and handled correctly.

What results can you expect?

® The extension is shipped with a set of CAST Transaction Configuration Center Entry Points, specifically related to JAX-WS Please see CAST
Transaction Configuration Center (TCC) Entry Points for more information about this.

® Once the analysis/snapshot generation has completed, HTTP API transaction entry points will be available for use when configuring the CAST
Transaction Configuration Center. In addition, you can view the results in the normal manner (for example via CAST Enlighten).

Objects

The following objects are displayed in CAST Enlighten:

Icon Object Type

E} SOAP Java Web Service
ﬂT} SOAP Java Port Type
E] SOAP Java Operation

SOAP Java Client Operation



E} SOAP Java Client

Q SOAP Client end point



	JAX-WS - 1.0

