
CSS3 vs CSS4 - what are the benefits of upgrading

Introduction
Schema size on disk
Faster VACUUM
Query performance improvement

Overall analysis/snapshot execution time improvements

Introduction
CAST Storage Service (CSS) 3 is a re-packaged , while uses . Since the for PostgreSQL 9.6.11 CAST Storage Service 4 PostgreSQL 13 EOL
PostgreSQL 9.6.x is scheduled for , CAST would encourage you to upgrade your instance wherever possible. Over and above the November 2021
benefits of using a PostgreSQL release that is not due to go until November 2025, the added to PostgreSQL between 9.6 and 13 are EOL improvements
worth highlighting - these improvements also provide better performance for use with CAST AIP. The major benefits are listed below.

Schema size on disk

The default CAST AIP schemas created on a CSS4/PostgreSQL 13 instance are when compared to the same schemas created on a CSS3smaller in size
/PostgreSQL 9.6.x instance. This is primarily due to the fact that index storage handling has improved in PostgreSQL 13: the B-tree index takes up less
space on disk.

Faster VACUUM

The built in on CSS4/PostgreSQL 13 because of the ability to vacuum indexes in parallel which was not supported VACUUM process is much faster
in CSS3/PostgreSQL 9.6.x (you can run a VACUUM process directly in AIP Console - see). If you Administration Center - Settings - CSS Optimization
are running VACUUM manually using PgAdmin or an equivalent tool, you can also specify the PARALLEL directive to control how many parallel VACUUM
jobs you want running on your indexes - see .https://www.postgresql.org/docs/current/sql-vacuum.html

Query performance improvement

Query performance has been improved in CSS4/PostgreSQL 13 because incremental sort has been implemented for multi-column sorts. This performance
improvement is easily highlighted using the following query executed on both CSS4/PostgreSQL 13 and CSS3/PostgreSQL 9.6:

Summary: documentation about the benefits of upgrading to CAST Storage Service 4, from CAST Storage Service 3.

Note that CAST routinely recommends using PostgreSQL on Linux, rather than CAST Storage Service on Microsoft Windows since
performance is always better.

https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/docs/13/release-13.html
https://doc.castsoftware.com/display/AIPCONSOLE/Administration+Center+-+Settings+-+CSS+Optimization
https://www.postgresql.org/docs/current/sql-vacuum.html

DROP TABLE IF EXISTS abc;
CREATE TABLE abc (x int PRIMARY KEY, y int);
CREATE INDEX ON abc (y);
INSERT INTO abc
SELECT x, x % 16378
FROM generate_series(1,1000000) x;

SELECT pg_size_pretty(pg_relation_size('abc_y_idx')); -- Get the size of index

EXPLAIN ANALYZE
SELECT count(*)
FROM abc
WHERE y = 50;

DROP INDEX abc_y_idx;
ANALYZE abc;

EXPLAIN ANALYZE
SELECT *
FROM abc
WHERE x % 13 = 0
ORDER BY x, y DESC
LIMIT 13;

The query plan for CSS3/PostgreSQL 9.6 and CSS4/PostgreSQL 13 are shown below - the shown on the last line is vastly better when execution time
using CSS4/PostgreSQL 13:

CSS3/PostgreSQL 9.6 Query Plan

Limit (cost=19542.51..19542.54 rows=13 width=8) (actual time=373.912..373.916 rows=13 loops=1)
 -> Sort (cost=19542.51..19555.01 rows=5000 width=8) (actual time=373.910..373.912 rows=13 loops=1)
 Sort Key: x, y DESC
 Sort Method: top-N heapsort Memory: 25kB
 -> Seq Scan on abc (cost=0.00..19425.00 rows=5000 width=8) (actual time=0.061..359.229 rows=76923
loops=1)
 Filter: ((x % 13) = 0)
 Rows Removed by Filter: 923077
Planning time: 0.839 ms
Execution time: 373.971 ms

CSS4/PostgreSQL 13 Query Plan

Limit (cost=7.52..100.14 rows=13 width=8) (actual time=0.135..0.140 rows=13 loops=1)
 -> Incremental Sort (cost=7.52..35633.43 rows=5000 width=8) (actual time=0.133..0.136 rows=13 loops=1)
 Sort Key: x, y DESC
 Presorted Key: x
 Full-sort Groups: 1 Sort Method: quicksort Average Memory: 25kB Peak Memory: 25kB
 -> Index Scan using abc_pkey on abc (cost=0.42..35408.43 rows=5000 width=8) (actual time=0.044..0.113
rows=14 loops=1)
 Filter: ((x % 13) = 0)
 Rows Removed by Filter: 168
Planning Time: 0.617 ms
Execution Time: 0.177 ms

Overall analysis/snapshot execution time improvements
Running the same analysis/snapshot on the same host server using CSS3 and CSS4 shows an improvement in performance for CSS4:

CSS3 (12 GB RAM, 4 CPU) CSS4 (12 GB RAM, 4 CPU)

totalAnalysisDuration = 02:46:34.368 totalAnalysisDuration = 02:41:40.424

totalSnapshotDuration = 00:19:43.032 totalSnapshotDuration = 00:15:53.693

	CSS3 vs CSS4 - what are the benefits of upgrading

